
 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

1

Playing tasks with
Django & Celery

Mauro Rocco
@fireantology

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

2

About me

About Jamendo
● Jamendo is a community of free, legal and unlimited music published

under Creative Commons licenses

● Free Music for users

● Popularity and earnings for artists

● Music licensing and background music at competitive prices for
companies

● I'm a Web Developer

● Python, Javascript, PHP, Java/Android

● celery contributor (just one of the hundreds)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

3

Jamendo needs
● Multi-format music encoding
● Statistics (downloads, listens, reviews, stars, fb

likes) on different units
● Music analysis trough external services
● Music qualification trough several sources
● Integration with third part services
● Common jobs (contract generations,

certifications, bills, search index update)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

4

Celery

● Async & Sync processes
● Concurrency within a box
● Distributed (across machines)
● Scheduling (interval, cron, ...)
● Fault tolerant
● Subtask, Set of tasks
● Web monitoring (django-celery and others)

“Celery is an asynchronous task queue/job queue based on
distributed message passing. It is focused on real-time

operation, but supports scheduling as well”

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

5

AMPQ
The Advanced Message Queuing Protocol (AMQP) is an open standard application layer
protocol for Message Oriented Middleware.

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

6

Celery schema

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

7

Celery worker
● Is the celery process that execute the tasks
● Can serve one or multiple queues
● Have a max number of tasks that can be

executed at the same time
● Can be remotely controlled
● Have a great configuration option called

MAX_TASK_PER_CHILD

$
$ celeryd -l INFO -c 5 -Q queue1 -E

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

8

Celery worker

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

9

Defining a simple task
from celery.decorators import task

@task
def make_money(how_much):
 logger = make_money.get_logger()
 logger.info("Congratulation, you earned %s$" % how_much)
 if how_much>1000000:
 return "Bora Bora"
 return "Keep working"

>>> result = make_money.delay(200)
>>> result.get()
“Keep working”

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

10

Retrying a task if something fails
from celery.decorators import task

@task
def make_money_real_life(how_much, wife=True):
 try:
 logger = make_money.get_logger()
 if wife:
 raise Exception("Incompatibility exception")
 logger.info("Congratulation, you earned %s$" % how_much)
 if how_much>1000000:
 return "Bora Bora"
 return "Keep working"
 except Exception,exc:
 make_money_real_life.retry(exc=exc,
 countdown=60,
 args=[how_much,False])

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

11

Task set example

 def run(self, setid=None, subtasks=None, **kwargs):
 …
 if not setid or not subtasks:
 …
 tasks = []
 for slice in slices:
 tasks.append(uploadTrackSlice.subtask((slice,folder_name)))

 job = TaskSet(tasks=tasks)
 task_set_result = job.apply_async()
 setid = task_set_result.taskset_id
 subtasks = [result.task_id for result in task_set_result.subtasks]
 self.incrementalRetry("Result not ready", args=[setid,subtasks])

 #Is a retry than we just have to check the results
 tasks_result = TaskSetResult(setid, map(AsyncResult,subtasks))
 if not tasks_result.ready():
 self.incrementalRetry("Result not ready", args=[setid,subtasks])
 else:
 if tasks_result.successful():
 return tasks_result.join()
 else:
 raise Exception("Some of the tasks was failing")

Extract from a jamendo task that upload track metadata in xml format to an ftp server for
music analysis

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

12

The Jamendo Task class

class JamTask(Task):

 def __call__(self, *args, **kwargs):
 """This method is in charge of call the run method of the task"""
 self.max_retries = 30
 self.sandbox = SandBox(self.name, self.request.id,
 settings.PATH_SANDBOX, settings.DEBUG)
 self.taskLogger = TaskLogger(args, kwargs)
 self.taskLogger.__enter__()
 .
 .
 return self.run(*args, **kwargs)
 .
 .
 def after_return(self, status, retval, task_id, args, kwargs, einfo):
 """This method is called when the tasks end,
 on whatever return state"""
 self.taskLogger.__exit__(status, retval, args, kwargs, einfo)
 self.cleanTaskSandBox(status,kwargs)
 self.closeAllConnections()

The way for define common behaviour to all your tasks is to override __call__
and after_return methods of the celery Task class

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

13

Web Monitoring tools

● django-celery
https://github.com/ask/django-celery/

● celery-pylons
http://pypi.python.org/pypi/celery-pylons

● flask-celery
https://github.com/ask/flask-celery/

https://github.com/ask/django-celery/
http://pypi.python.org/pypi/celery-pylons
https://github.com/ask/flask-celery/

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

14

django-celery
Task scheduling and monitoring trough the Django admin

interface

● The celeryconf.py file is replaced by the django
settings

● The CELERY_IMPORTS conf var is replaced by the
Django INSTALLED_APPS

You run celery trough the manage.py of your project

$ python manage.py celeryd -l INFO -E

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

15

django-celery settings.py

INSTALLED_APPS += ("djcelery",)
.
.
import djcelery
djcelery.setup_loader()
.
.
CELERYBEAT_SCHEDULER = "djcelery.schedulers.DatabaseScheduler"
.
.
#standard celery conf vars (Broker settings, concurrency ,...)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

16

django-celery schema

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

17

django-celery

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

18

django-celery

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

19

Some little nice extensions
Execute tasks directly from the django admin interface

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

20

Some little nice extensions

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

21

Jamendo needs UNIQUE tasks
A task is unique when can run only one instance of it at the same time
in the whole cloud

● Rational utilization of shared resources

● Atomic access to sensitive resources

Our idea:

● Define a list of UNIQUE tasks in settings.py

● If a lock is found define the behaviour retry or fail

● Allow the possibility of define a task UNIQUE on arguments (same
task type with different arguments can run)

● Our solution : mongodb for write and release locks.

● Best solution: cache, virtual file system ?

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

22

Unique tasks
UNIQUE_TASKS = {
 "searchengines.solr.index": { "retry_on_lock": False, "lock_on_type": True, },
 "stats.album.rebuild": { "retry_on_lock": True, "lock_on_type": False, },
}

On task start (method __call__)
self.taskConcurrency = None
if kwargs[“task_name”] in settings.UNIQUE_TASKS:
 self.taskConcurrency = TaskConcurrency(kwargs,
 args,
 settings.UNIQUE_TASKS\
 [kwargs[“task_name”]])
 if not self.taskConcurrency.canRun():
 if self.taskConcurrency.retry:
 self.incrementalRetry(Exception("Concurrency Exception"))
 else:
 raise Exception("Concurrency Exception")

On task end (method after_return)

if self.taskConcurrency:
 self.taskConcurrency.__exit__()

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

23

Celery logs

● The logger object is not unique, the same
handler is added to different logs object

● Main Process logger, PoolWorker logger,
TaskLogger

● The command logging.getLogger(“Celery”) give
you back only the Main Process logger

● Extend logging features was a bit tricky until
the last version

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

24

Centralized logging
● We give a very little contribute to celery by adding the

signal after_setup_logger and after_setup_task_logger
(the name are self explanatory)

● after_setup_logger is triggered after the build of the Main
Process logger and after the build of each PoolWorker
logger

● The signals give you back a log object, in this way you can
add additional handler for implement a centralized logging

● In our specific case we are sending the logs of all workers
to a syslog server that store log lines in a separated file.

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

25

Centralized logging

import logging
from celery.signals import after_setup_logger, after_setup_task_logger

def after_setup_logger_handler(sender=None, logger=None,
 loglevel=None, logfile=None,
 format=None, colorize=None,
 **kwds):
 handler = logging.handlers.SysLogHandler(address=('syslogserver',
 514))
 handler.setFormatter(logging.Formatter(format))
 handler.setLevel(logging.INFO)
 logger.addHandler(handler)

after_setup_logger.connect(after_setup_logger_handler)
after_setup_task_logger.connect(after_setup_logger_handler)

 Playing tasks with Django & Celery
EuroPython 2011 – Florence
Mauro Rocco

26

Thank you
http://www.celeryproject.org

QA

http://www.celeryproject.org/

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26

